
WHITEPAPER

 A Stress-Free Roadmap
to Application Modernization
By Chris Grundemann

https://www.nginx.com

2STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Table of Contents

Executive Summary . 3

Introduction . 4

Primer . 4

Challenges . 5

Roadmap . 6

Pillar 1: Scale . 6

Pillar 2: Security . 8

Pillar 3: Observability . 9

Pillar 4: Governance .10

What Next? . 12

3STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Executive Summary
Microservices are both the means and the method for application modernization .
A microservices architecture creates a modular application in which each service can be
developed, tested, deployed, scaled, and ultimately replaced independently of any other
service . What’s more, the agility, flexibility, velocity, and efficiency that a microservices
architecture enables is exactly what is fueling successful digital transformation for
organizations and more importantly, the digital experiences that customers now expect .

Unfortunately, most digital transformation, cloud adoption, and application modernization
efforts are failing . The difficulties typically coalesce around one of three main areas: culture
(new operating models often require new operational structures), complexity (modularity
comes at a cost, particularly in network requirements and cloud provider peculiarities), and
security (the attack surface becomes larger and more dynamic) .

The key to avoiding these common challenges, it turns out, is all about preparation . Successful
application modernization starts long before the first container is ever created . The path, and
thus the roadmap, starts with careful documentation, planning, cultural shifts, and process
improvements around the four pillars of scale, security, observability, and governance . The
bulk of this whitepaper is focused on explaining each of these pillars, including why they are
important and what the common challenges are, as well as providing practical and actionable
advice for your own application modernization journey .

THE PATH TO SUCCESS
STARTS WITH PLANNING
AROUND THE FOUR PILLARS
OF SCALE, SECURITY,
OBSERVABILITY,
AND GOVERNANCE

4STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Introduction

While some companies have made great strides in their overall digital
transformation efforts, and application modernization projects in particular,
that’s simply not true for everyone . With all the hype surrounding “cloud
native”, microservices, containers, CI/CD, service mesh, and more, it’s easy
to feel like you’re behind . The problem with that view is that it leads many
intelligent folks to jump forward into a situation they don’t understand
without a clear plan for success .

The fact is that most organizations are in a similar position . It’s worth remembering this
William Gibson quote: “the future is here; it’s just not evenly distributed” . Rather than racing
to catch up, you’re far better off slowing down and doing some serious planning as the first
step in your application modernization efforts . But even for those who know this, it can be
hard to know where to start and what to focus on .

This paper answers those big questions with a roadmap crafted through knowledge from
those who have gone before . We’ll explore the common pitfalls, gotchas, and other dangers
along your path . And we’ll carefully document how to avoid them with proper planning
and documenting up front . All of this revolves around the four pillars of scale, security,
observability, and governance . Within each of these areas, this roadmap provides specific
actionable advice to lower your stress as you embark on this journey .

P R I M E R

If you’re reading this, you already have a pretty good idea of what application modernization
is, at least at a high level . However, the idea of a “modern application” is worth exploring
before we dive deeper .

First, the wrong answer . Contrary to what some flippant comments may lead you to believe,
application modernization is not synonymous with containerization or with deploying
Kubernetes . This is an easy mistake based on the current state of the art . The truth is a
layer deeper . Kubernetes itself is not nearly as important as what it enables: microservices .

Traditional monolithic applications are defined by layers, such as front-end, back-end,
web controller, and database, which communicate in memory . A modern application
built using microservices is defined instead by a collection of individual services – each
performing a complete but singular atomic or composite function – which communicate
over a network . A microservices architecture creates a modular application in which each
service can be developed, tested, deployed, scaled, and ultimately replaced independently
of any other service . In short, microservices are both the means and the method for
application modernization .

APPLICATION MODERNIZATION
IS NOT SYNONYMOUS WITH
CONTAINERIZATION OR WITH
DEPLOYING KUBERNETES

MICROSERVICES ARE
BOTH THE MEANS AND THE
METHOD FOR APPLICATION
MODERNIZATION

THE FUTURE IS HERE;
IT’S JUST NOT
EVENLY DISTRIBUTED

5STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Microservices architecture provides the agility, flexibility, velocity, and efficiency that
lead to successful digital transformation for organizations and, more importantly, enable
the digital experiences that customers now expect . In addition to automatic and elastic
per-service scaling, cloud-native applications built using microservices enable and facilitate
new modalities such as per-service A/B testing, blue-green deployments, and canary
releases . If you must refactor entire monolithic applications to respond to a user preference
or trend, you’ll simply never keep up . The need for this highly responsive, digital-first
approach to business (supported by cloud-native applications using microservices) has
become even more clear than ever before through the global response to the COVID-19
pandemic . So, there’s no time to waste .

C H A L L E N G E S

Of course, knowing that you must modernize your applications does not guarantee
success . As early as January 2018, McKinsey reported that “only 8 percent of companies
we surveyed recently said their current business model would remain economically viable
if their industry keeps digitizing at its current course and speed” . However, 18 months later,
research by Bain & Company found “that only 8% of global companies have been able to
achieve their targeted business outcomes from their investments in digital technology” .
And the stats have not really improved . In March of 2020 another McKinsey survey found
that digital progress had stalled at 76% of organizations, and as recently as June 2021
an Enterprise Management Associates survey showed that less than a third (28%) of
respondents could categorize their cloud investments as “very successful” .

So, what’s going on? We’ve known for years that things are changing and yet we’re still
failing to make the needed changes . What’s standing in the way? For starters, many of
these failed digital transformation and cloud adoption efforts have attempted to “lift-
and-shift” existing monolithic applications onto new platforms . That’s simply not going to
produce the desired outcomes . But even those who focus on application modernization can,

On Premises

Traditional
Monolithic Apps

Modern Cloud-Native Apps
Built Using Microservices

Cloud-Based Container-Based

Figure 1: Microservices power
modern apps

MICROSERVICES ARCHITECTURE
PROVIDES THE AGILITY,
FLEXIBILITY, VELOCITY,
AND EFFICIENCY THAT
ENABLE THE DIGITAL
EXPERIENCES THAT
CUSTOMERS NOW EXPECT

WE’VE KNOWN FOR YEARS
THAT THINGS ARE CHANGING
AND YET WE’RE STILL
FAILING TO MAKE THE
NEEDED CHANGES

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/why-digital-strategies-fail
https://www.bain.com/insights/four-myths-of-digital-transformation-what-only-8-percent-of-companies-know
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-to-restart-your-stalled-digital-transformation
https://gestaltit.com/tech-talks/bluecat/bluecat-2021/chrisgrundemann/the-case-for-cloud-collaboration-how-and-why-cloud-and-network-teams-must-work-together/

6STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

and often do, struggle . These struggles typically coalesce around one of three main areas:
culture (new operating models often require new operational structures), complexity
(modularity comes at a cost, particularly in network requirements), and security (the attack
surface becomes larger and more dynamic) . Another factor is the lack of standardization
among cloud platforms, making each one peculiar in its own ways and complicating hybrid
and multi-cloud deployments .

The good news is that all these challenges are within your control, and most simply require
a bit of prework to set yourself up for success .

R O A D M A P

Luckily, you’re not the first person to set down this path . Less luckily, many of those
who tread before you have failed or are currently stuck . And while many folks will argue
all day and night about which configuration management platform or automation server
to use, very few are willing to admit that the real secret to success is as boring as proper
preparation . The key lies in mindful and intentional documentation, planning, cultural
shifts, and process improvements around the four pillars of scale, security, observability,
and governance . Scale is our goal and security our mandate, observability gives us insight,
and governance provides flexible control . Spending time up front to consider your current
and ideal state across all four pillars will pay dividends down the road .

The bottom line is that successful application modernization starts long before the first
container is ever deployed . In the following sections, we explore each of these pillars –
why they’re important, what can go wrong, and how you can set yourself up for success .

Pillar 1: Scale

The ability to flexibly scale is at the heart of modern application design . It’s actually
one of the driving forces, which is exactly why we’ve seen the so-called ‘hyperscalers’
(companies like Amazon, Google, and Netflix) take the lead on implementing service-oriented
architectures (SOA), microservices, and containers/Kubernetes . While a legacy monolithic
application can only scale vertically and “all-at-once”, a microservices application can scale
vertically, horizontally, and elastically – and can do so at either the cluster or service level .

But, like so many things, scale doesn’t just happen by default – it must be carefully
planned for . Additionally, while a microservices architecture can enable amazing scale by
modularizing applications and decoupling functions, it does so by introducing additional
operational complexity that must be dealt with . A modern cloud-native application built
using microservices can easily have hundreds or thousands of services with dozens or
hundreds (or more!) instances of each . And those instances are often spread from data
center to cloud to edge . It can boggle the mind just to think about, let alone manage,
that kind of distributed scale .

THE GOOD NEWS IS THAT
ALL THESE CHALLENGES
ARE WITHIN YOUR CONTROL,
AND MOST SIMPLY REQUIRE
A BIT OF PREWORK TO SET
YOURSELF UP FOR SUCCESS

THE REAL SECRET TO
SUCCESS IS AS BORING
AS PROPER PREPARATION

THE ABILITY TO
FLEXIBLY SCALE IS AT
THE HEART OF MODERN
APPLICATION DESIGN

7STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Figure 2: Microservices enable apps
to scale easily

To set your organization up for successful scale down the road, the first thing you need
to address is organizational structure . Conway’s law applies here, which is an adage
stating that “organizations design systems that mirror their own communication structure” .
To leverage this knowledge, you should first determine (and document) service boundaries .
Then build development teams that map to those boundaries . And don’t forget that many
changes will need to be accomplished across these boundaries, so your teams need a
way to collaborate and communicate with each other just as your services do . Beyond
organizational structure, you need a robust data governance model as well, to ensure
proper concurrency and data consistency across services .

Of course, you also need the technical ability to manage scale directly . NGINX is a great
example of scaling efficiently . Originally developed to solve the C10K problem, NGINX helps
you to scale and manage traffic across your estate of web applications, monoliths, APIs, and
microservices-based apps . Lightweight and platform agnostic, NGINX can be deployed as
a web server, load balancer, reverse proxy, content cache, API gateway, Kubernetes Ingress
Controller, and service mesh .

A tool like F5 NGINX Controller not only makes management of an estate of NGINX
instances more tenable, but also enhances the cross-team communication and collaboration
we identified as essential above . Key things to look for in a management platform are
app-centricity and multi-role self-service . Everyone involved in application development
and deployment should be able to manage and monitor the bits of the lifecycle that are
important to them through modular workflows .

FIRST DETERMINE SERVICE
BOUNDARIES, THEN BUILD
DEVELOPMENT TEAMS THAT
MAP TO THOSE BOUNDARIES

https://www.aosabook.org/en/nginx.html
https://www.nginx.com/resources/glossary/nginx/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/resources/glossary/caching/
https://www.nginx.com/learn/api-gateway/
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-service-mesh
https://www.nginx.com/products/nginx-controller

8STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

Figure 3: Security is taken into
account earlier in the software
development lifecycle

Pillar 2: Security

Security is likely already top of mind across the industry . Not only are attacks becoming
more common, the potential damage caused by each threat is reaching catastrophic levels .
Modern applications are not immune and their architecture can actually compound the
difficulties . Cloud-native applications built using microservices are inherently distributed,
heterogeneous, and network-reliant . This means that the attack surface is multiplied .
There is no single or often even identifiable perimeter . Each service and every API must
be both individually and collectively secured .

In addition to the technical challenges, there is almost always cultural friction between
developer (and DevOps) teams moving at the new speed of business and security teams
hamstrung by policies and tools designed and deployed for legacy IT methodologies .
At this point we all know that we need to “shift security left” because incorporating security
testing and controls into the daily work of development, QA, and operations results in better
outcomes . But if that was easy, we wouldn’t still be talking about it so much, would we?

SEC

Plan

Code

Bu
ild

Operate

Deploy

Test Monitor

DEV OPS

SEC

One of the first things that must be addressed is this friction between the legacy security
methodology of centralized, inflexible, after-the-fact, perimeter-based security protections
and rapid, agile, continuous modern application development and deployment . The first
step is a thorough examination of security policy and how it is enforced . Document security
goals and policies in a layered approach . What controls need to be centralized, and
which can be self-service? How can you evolve your security procedures to be more
application-centric?

Another key action needed before you begin deploying services is selecting security
tools that can be inserted directly into your CI/CD pipeline as code . One example is finding
a lightweight web application firewall (WAF), such as F5 NGINX App Protect, that deploys
easily into multiple environments while automating security configuration and policies .
This allows you to test for security efficacy at every stage of development without ever
needing to stop or even slow down .

THE POTENTIAL DAMAGE
CAUSED BY EACH
THREAT IS REACHING
CATASTROPHIC LEVELS

WE ALL KNOW THAT
WE NEED TO “SHIFT
SECURITY LEFT”

SELECT SECURITY TOOLS
THAT CAN BE INSERTED
DIRECTLY INTO YOUR
CI/CD PIPELINE AS CODE

https://www.nginx.com/products/nginx-app-protect/

9STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

One more security question to ask up front: “How will we orchestrate security across all
of our applications, services, and APIs?” Pay particular attention here not just to layering in
security across the estate, but also providing self-service access to Dev and DevOps teams
while providing the needed visibility and insights back to security teams . Leveraging an
application-centric control plane such as the NGINX Controller App Security add-on can
be a great way to meet these demands .

Pillar 3: Observability

Technically, observability is the ability to infer the internal state of a system based on its
external outputs . In the reality of modern application development, it’s more complicated .
A useful comparison is traditional monitoring, which is based on collecting pre-defined
information (“known unknowns”) with the hope of catching problems you’ve seen previously,
before they happen again . Observability, on the other hand, is broader in scope and is
aimed at uncovering “unknown unknowns” with the goal of catching previously unseen
issues and trends . While monitoring was suitable for many simple legacy systems, the world
of modern distributed systems demands observability .

Monitoring Observability

Based on what we’ve already learned about cloud-native applications built using micro-
services, you likely can see the inherent challenge . Microservices are both interdependent
and typically scattered across multiple hosts, or even sites and clouds . As the application
scales dynamically to meet demand, new instances of these services are often created
and destroyed automatically in real time . This means that in order to provide observability
you need to be able to quickly discover and start collecting logs, metrics, and traces from
service instances and other components . You must be able to collect and correlate a
massive amount of granular data . And do all of this without losing sight of the ultimate goal:
ensuring a high-quality experience to all users, everywhere .

Figure 4: Quickly detecting both
known unknowns and unknown
unknowns is critical for delivering
exceptional digital experiences

OBSERVABILITY IS
AIMED AT UNCOVERING
“UNKNOWN UNKNOWNS”

https://www.nginx.com/blog/introducing-nginx-controller-app-security-for-delivery/

10STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

When planning for observability, it is important to consider at least three key factors:

• Instrumentation – How you will discover, collect, and set baselines for telemetry
from every system component

• Correlation – How you will structure your instrumentation to provide the needed
context and topology, to understand causal dependencies

• Artificial intelligence – How you will leverage AI to remove dependencies on
time-consuming human trial and error and surface those unknown unknowns reliably

One way to make observability (along with scale and security) easier to achieve is to
use consistent components when building your distributed application delivery system .
Extending the same set of network features across multiple systems (like using NGINX
for proxying, load balancing, caching, API traffic management, and so on) means you can
monitor just one solution rather than a number of tools that each perform one function .
In this example you can then layer on a monitoring tool like NGINX Amplify, which monitors
both NGINX and other components (for example, underlying OS, application servers like
PHP FPM, databases, and so on) .

Network traffic itself is another great source of insight . For full visibility into all north-south
traffic entering and leaving a cluster of microservices, along with total traffic management
and enhanced security, a production-grade Ingress controller, such as F5 NGINX Ingress
Controller, is ideal . A more advanced approach to making your distributed application
more observable is to deploy it with a service mesh, such as F5 NGINX Service Mesh,
which essentially adds a common control plane and data plane to your Kubernetes
environment . This universal data plane inherently “knows about” all network traffic within
a cluster and can therefore easily provide excellent insight to your observability plane .
In addition to observability, there are many other advantages to using a service mesh
regarding resilience, routing, scalability, and security .

Pillar 4: Governance

Finally, we need to discuss the fourth pillar of application modernization: governance .
Technical governance isn’t about politics or politicians, but it is about policies (rules) .
Specifically, it refers to the ability to enforce policy across an organization and/or
across a technology estate . Proper governance leads to a common policy framework
being implemented within each team, department, cluster, service, or application .
More specifically, we can break governance down into two vectors: policy scope refers
to where a policy is applied (such as within a specific cloud provider or namespace) and
policy targets refer to which policies are applied within the given scope . Targets can be
related to security, networking, configuration, and image management .

NETWORK TRAFFIC ITSELF
IS ANOTHER GREAT SOURCE
OF INSIGHT

TECHNICAL GOVERNANCE
ISN’T ABOUT POLITICS
OR POLITICIANS, BUT
ABOUT POLICIES

https://www.nginx.com/products/nginx
https://www.nginx.com/products/nginx-amplify
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-ingress-controller/
https://www.nginx.com/products/nginx-service-mesh

11STRESS-FREE ROADMAP TO APPLICATION MODERNIZATION

As you can probably guess, governance is one of those areas that becomes more
necessary and more complicated as you modernize your applications . Distributed
applications built by distributed teams at the pace of modern business are notoriously
hard to govern . And what’s worse, governance done wrong can hinder and hurt the ability
of your Dev and DevOps teams to execute . Many organizations are starting from a place
with multiple governance frameworks, often overlapping and conflicting . And even if your
current governance model works great, it probably wasn’t built to interface with modern
application development tools and modalities .

That makes a documentation and rationalization exercise the first step . You need to
understand how and where you are managing policy today . How many governance
frameworks do you have? When was the last time they were evaluated? What tools are you
using to track, apply, enforce, and verify these policies? Which targets do you have robust
governance frameworks for, and which are new? For example, you probably have formalized
security policies (you do, don’t you?) and you may already have a plan for managing cloud
costs, but you likely haven’t thought yet about how to manage container images or cluster
configuration . Once you have a handle on current policies and their level of enforcement,
you can work on creating a more universal governance framework that takes modern
application development and hybrid/multi-cloud environments into account .

Once you’ve thought through the needed policies, it’s time to think about enforcement .
The key here is to focus on guardrails rather than gates . You don’t want to slow your
developers down, but you do want to keep them on track . Just as water flows downhill,
people also take the easiest path . Don’t put up obstructions that your teams will naturally
want to circumvent . Instead make it easy to follow your guidance . We spoke above about
needing security tools that can be inserted into your CI/CD pipeline as code and about
providing self-service wherever possible – think about all targets this way, not just security .

GOVERNANCE DONE WRONG
CAN HINDER YOUR DEV
AND DEVOPS TEAMS

FOCUS ON GUARDRAILS
RATHER THAN GATES

©2022 F5, Inc . All rights reserved . F5, NGINX, the NGINX logo, F5 NGINX, NGINX Amplify, NGINX App Protect, NGINX Controller,
NGINX Controller App Security, NGINX Ingress Controller, and NGINX Service Mesh are trademarks of F5 in the U .S . and in certain
other countries . Other F5 trademarks are identified at f5 .com . Any other products, services, or company names referenced herein may
be trademarks of their respective owners with no endorsement or affiliation, expressed or implied, claimed by F5 .

From a tooling perspective, the best way to enable governance is with a platform approach .
In fact, many companies are now standing up “Platform Ops” teams to help manage the
supported suite of application-delivery tools available to teams across the organization .
Of course, having a single app-centric delivery solution, like the previously mentioned
NGINX Controller, can make everyone’s lives easier by providing the right set of features
to effectively balance developer productivity with operations compliance .

What Next?
We’ve explored the promise and potential of application modernization with microservices,
as well as many of the most common challenges . We hope you’ve come away with plenty of
practical advice for avoiding the worst perils with careful documentation, planning, cultural
shifts, and process improvements around the four pillars of scale, security, observability,
and governance .

That means it’s time to take the next step by digging deeper and learning even more about
the journey ahead of you in this Fundamentals of Microservices webinar .

Happy travels!

AN APP-CENTRIC DELIVERY
SOLUTION EFFECTIVELY
BALANCES DEVELOPER
PRODUCTIVITY WITH
OPERATIONS COMPLIANCE

Security

Service Mesh

ADC

Analytics

APIM

Figure 5: A governance framework that focuses on guardrails and removes friction for developers
accelerates innovation

https://www.nginx.com
http://f5.com
https://www.nginx.com/blog/why-every-company-needs-platform-ops/
https://www.nginx.com/products/nginx-controller
https://www.nginx.com/resources/webinars/fundamentals-microservices/

	Introduction 4

